crv4, a mouse model for human ataxia associated with kyphoscoliosis caused by an mRNA splicing mutation of the metabotropic glutamate receptor 1 (Grm1).
نویسندگان
چکیده
We describe a novel spontaneous autosomal recessive mutation, cervelet-4 (crv4), which arose in a BALB/c strain. Mice homozygous for the mutation exhibit principally a reduced body size, a congenital neurological phenotype characterized by ataxic gait and intention tremor, with no gross anomalies observed in brain or cerebellum, and skeletal anomalies. Using linkage analysis, we mapped the crv4 locus to the proximal region of chromosome 10, at the location of the Grm1 gene. Genetic complementation crosses between crv4 and Grm1 KO mice confirmed that crv4 is a new allele of Grm1. Molecular analysis of the Grm1 gene in mutant mice revealed the insertion of a 190-bp LTR fragment in intron 4. Our results also indicated that the presence of the LTR fragment caused the disruption of the Grm1 normal splicing process and complete absence of the wild-type protein. crv4 is an interesting model to extend the study of Grm1 function and the pathological effects of Grm1 deficiency in vivo.
منابع مشابه
Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated ...
متن کاملAutosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1.
Autosomal-recessive congenital cerebellar ataxia was identified in Roma patients originating from a small subisolate with a known strong founder effect. Patients presented with global developmental delay, moderate to severe stance and gait ataxia, dysarthria, mild dysdiadochokinesia, dysmetria and tremors, intellectual deficit, and mild pyramidal signs. Brain imaging revealed progressive genera...
متن کاملDominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different...
متن کاملIdentification of Novel GRM1 Mutations and Single Nucleotide Polymorphisms in Prostate Cancer Cell Lines and Tissues
Metabotropic glutamate receptor 1 (GRM1) signaling has been implicated in benign and malignant disorders including prostate cancer (PCa). To further explore the role of genetic alterations of GRM1 in PCa, we screened the entire human GRM1 gene including coding sequence, exon-intron junctions, and flanking untranslated regions (UTRs) for the presence of mutations and single nucleotide polymorphi...
متن کاملMetabotropic glutamate receptor 1 and glutamate signaling in human melanoma.
Recently, several laboratories have started to investigate the involvement of glutamate signaling in cancer. In previous studies, we reported on a transgenic mouse model that develops melanoma spontaneously. Subsequent studies in these mice identified that the aberrant expression of metabotropic glutamate receptor 1 (GRM1) in melanocytes played a critical role in the onset of melanoma. Confirma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2006